Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
BMC Cancer ; 24(1): 515, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654239

RESUMO

BACKGROUND: Ovarian cancer (OC) is a gynecological malignancy tumor with high recurrence and mortality rates. Programmed cell death (PCD) is an essential regulator in cancer metabolism, whose functions are still unknown in OC. Therefore, it is vital to determine the prognostic value and therapy response of PCD-related genes in OC. METHODS: By mining The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Genecards databases, we constructed a prognostic PCD-related genes model and performed Kaplan-Meier (K-M) analysis and Receiver Operating Characteristic (ROC) curve for its predictive ability. A nomogram was created via Cox regression. We validated our model in train and test sets. Quantitative real-time PCR (qRT-PCR) was applied to identify the expression of our model genes. Finally, we analyzed functional analysis, immune infiltration, genomic mutation, tumor mutational burden (TMB) and drug sensitivity of patients in low- and high-risk group based on median scores. RESULTS: A ten-PCD-related gene signature including protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), 8-oxoguanine-DNA glycosylase (OGG1), HECT and RLD domain containing E3 ubiquitin protein ligase family member 1 (HERC1), Caspase-2.(CASP2), Caspase activity and apoptosis inhibitor 1(CAAP1), RB transcriptional corepressor 1(RB1), Z-DNA binding protein 1 (ZBP1), CD3-epsilon (CD3E), Clathrin heavy chain like 1(CLTCL1), and CCAAT/enhancer-binding protein beta (CEBPB) was constructed. Risk score performed well with good area under curve (AUC) (AUC3 - year =0.728, AUC5 - year = 0.730). The nomogram based on risk score has good performance in predicting the prognosis of OC patients (AUC1 - year =0.781, AUC3 - year =0.759, AUC5 - year = 0.670). Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the erythroblastic leukemia viral oncogene homolog (ERBB) signaling pathway and focal adhesion were enriched in the high-risk group. Meanwhile, patients with high-risk scores had worse OS. In addition, patients with low-risk scores had higher immune-infiltrating cells and enhanced expression of checkpoints, programmed cell death 1 ligand 1 (PD-L1), indoleamine 2,3-dioxygenase 1 (IDO-1) and lymphocyte activation gene-3 (LAG3), and were more sensitive to A.443,654, GDC.0449, paclitaxel, gefitinib and cisplatin. Finally, qRT-PCR confirmed RB1, CAAP1, ZBP1, CEBPB and CLTCL1 over-expressed, while PPP1R15A, OGG1, CASP2, CD3E and HERC1 under-expressed in OC cell lines. CONCLUSION: Our model could precisely predict the prognosis, immune status and drug sensitivity of OC patients.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/mortalidade , Prognóstico , Biomarcadores Tumorais/genética , Nomogramas , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Estimativa de Kaplan-Meier , Bases de Dados Genéticas , Curva ROC
2.
Neurogenetics ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460076

RESUMO

Twin and family studies have established the genetic contribution to idiopathic generalized epilepsy (IGE). The genetic architecture of IGE is generally complex and heterogeneous, and the majority of the genetic burden in IGE remains unsolved. We hypothesize that gene-gene interactions contribute to the complex inheritance of IGE. CNTN2 (OMIM* 615,400) variants have been identified in cases with familial adult myoclonic epilepsy and other epilepsies. To explore the gene-gene interaction network in IGE, we took the CNTN2 gene as an example and investigated its co-occurrent genetic variants in IGE cases. We performed whole-exome sequencing in 114 unrelated IGE cases and 296 healthy controls. Variants were qualified with sequencing quality, minor allele frequency, in silico prediction, genetic phenotype, and recurrent case numbers. The STRING_TOP25 gene interaction network analysis was introduced with the bait gene CNTN2 (denoted as A). The gene-gene interaction pair mode was presumed to be A + c, A + d, A + e, with a leading gene A, or A + B + f, A + B + g, A + B + h, with a double-gene A + B, or other combinations. We compared the number of gene interaction pairs between the case and control groups. We identified three pairs in the case group, CNTN2 + PTPN18, CNTN2 + CNTN1 + ANK2 + ANK3 + SNTG2, and CNTN2 + PTPRZ1, while we did not discover any pairs in the control group. The number of gene interaction pairs in the case group was much more than in the control group (p = 0.021). Taking together the genetic bioinformatics, reported epilepsy cases, and statistical evidence in the study, we supposed CNTN2 as a candidate pathogenic gene for IGE. The gene interaction network analysis might help screen candidate genes for IGE or other complex genetic disorders.

3.
J Org Chem ; 89(7): 5164-5169, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38536410

RESUMO

Formal total syntheses of stemonamine and cephalotaxine bearing the core cyclopenta[1,2-b]pyrrolo[1,2-a]azepine ring skeleton were achieved. The general synthetic strategy in the synthesis features the reductive oxy-Nazarov cyclization as key step, leading to the versatile construction of N-substituted spiro quaternary stereogenic centers from readily available starting materials.

4.
Environ Sci Technol ; 58(14): 6444-6454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551318

RESUMO

Catalyst design with a "Co-N-C" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in "Co-N-C" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.


Assuntos
Carcinoma Hepatocelular , Poluentes Ambientais , Neoplasias Hepáticas , Humanos , Cobalto/química , Cianetos , Peróxidos/química , Catálise
5.
Chem Commun (Camb) ; 60(19): 2637-2640, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38348479

RESUMO

The first catalytic enantioselective [5+1] cycloaddition reactions of C,N-cyclic azomethine imines with isocyanides are reported herein. The method displays a broad substrate scope and atom-economy. A series of chiral tetrahydroisoquinoline containing indole skeletons were obtained in up to 90% yield with 95% ee under mild reaction conditions. A possible catalytic model was also proposed.

6.
Expert Rev Clin Immunol ; 20(5): 559-569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224014

RESUMO

OBJECTIVE: This study aimed to check the expression profile of the C-X-C motif chemokine ligands (CXCLs)-C-X-C motif chemokine receptor 2 (CXCR2) axis in cervical cancer and to explore the cross-talk between cervical cancer cells and neutrophils via CXCLs-CXCR2 axis. METHODS: Available RNA-sequencing data based on bulk tissues and single-cell/nucleus RNA-sequencing data were used for bioinformatic analysis. Cervical cancer cell lines Hela and SiHa cells were utilized for in vitro and in vivo studies. RESULTS: Except for neutrophils, CXCR2 mRNA expression is limited in other types of cells in the cervical tumor microenvironment. CXCLs bind to CXCR2 and are mainly expressed by tumor cells. CXCL1, 2, 3, 5, 6, and 8, which are consistently associated with neutrophil infiltration, are also linked to poor prognosis. SB225002 (a CXCR2 inhibitor) treatment significantly impairs SiHa cell-induced neutrophil migration. CXCL1, CXCL2, CXCL5, or CXCL8 neutralized conditioned medium from SiHa cells have weaker recruiting effects. The conditioned medium of neutrophils from healthy donors can slow cancer cell proliferation. Conditioned medium of tumor-associated neutrophils (TANs) can drastically enhance cervical cancer cell growth in vitro and in vivo. CONCLUSIONS: The CXCLs-CXCR2 axis is critical in neutrophil recruitment and tumor cell proliferation in the cervical cancer microenvironment.


Assuntos
Neutrófilos , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Meios de Cultivo Condicionados/metabolismo , RNA/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral
7.
BMC Womens Health ; 24(1): 37, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218807

RESUMO

BACKGROUND: Both mitophagy and long non-coding RNAs (lncRNAs) play crucial roles in ovarian cancer (OC). We sought to explore the characteristics of mitophagy-related gene (MRG) and mitophagy-related lncRNAs (MRL) to facilitate treatment and prognosis of OC. METHODS: The processed data were extracted from public databases (TCGA, GTEx, GEO and GeneCards). The highly synergistic lncRNA modules and MRLs were identified using weighted gene co-expression network analysis. Using LASSO Cox regression analysis, the MRL-model was first established based on TCGA and then validated with four external GEO datasets. The independent prognostic value of the MRL-model was evaluated by Multivariate Cox regression analysis. Characteristics of functional pathways, somatic mutations, immunity features, and anti-tumor therapy related to the MRL-model were evaluated using abundant algorithms, such as GSEA, ssGSEA, GSVA, maftools, CIBERSORT, xCELL, MCPcounter, ESTIMATE, TIDE, pRRophetic and so on. RESULTS: We found 52 differentially expressed MRGs and 22 prognostic MRGs in OC. Enrichment analysis revealed that MRGs were involved in mitophagy. Nine prognostic MRLs were identified and eight optimal MRLs combinations were screened to establish the MRL-model. The MRL-model stratified patients into high- and low-risk groups and remained a prognostic factor (P < 0.05) with independent value (P < 0.05) in TCGA and GEO. We observed that OC patients in the high-risk group also had the unfavorable survival in consideration of clinicopathological parameters. The Nomogram was plotted to make the prediction results more intuitive and readable. The two risk groups were enriched in discrepant functional pathways (such as Wnt signaling pathway) and immunity features. Besides, patients in the low-risk group may be more sensitive to immunotherapy (P = 0.01). Several chemotherapeutic drugs (Paclitaxel, Veliparib, Rucaparib, Axitinib, Linsitinib, Saracatinib, Motesanib, Ponatinib, Imatinib and so on) were found with variant sensitivity between the two risk groups. The established ceRNA network indicated the underlying mechanisms of MRLs. CONCLUSIONS: Our study revealed the roles of MRLs and MRL-model in expression, prognosis, chemotherapy, immunotherapy, and molecular mechanism of OC. Our findings were able to stratify OC patients with high risk, unfavorable prognosis and variant treatment sensitivity, thus improving clinical outcomes for OC patients.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , Mitofagia , Neoplasias Ovarianas/genética , Paclitaxel , Axitinibe , Prognóstico
8.
Org Biomol Chem ; 22(6): 1219-1224, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231004

RESUMO

A new fluorescent probe SWJT-23 with lysosomal targeting ability for detection of hypobromous acid (HBrO) was synthesised based on the naphthalimide skeleton. This probe exhibited a fast response (within 3s), a low detection limit (1.24 nM), excellent selectivity and a high fluorescence quantum yield (Φ = 0.490). Moreover, SWJT-23 not only realized the sensitive detection of HBrO in cells and water samples, but also was fabricated as a paper-based sensor. In consequence, SWJT-23 is expected to be an efficient and powerful tool for monitoring HBrO in organisms and the environment in realistic scenarios.


Assuntos
Corantes Fluorescentes , Lisossomos , Bromatos , Água
9.
Artigo em Inglês | MEDLINE | ID: mdl-38083314

RESUMO

This paper proposes a locally modified phantom model to numerically assess the worst-case configuration of orthopedic implants under magnetic resonance imaging (MRI). The proposed model is developed based on the standard American Society for Testing and Materials (ASTM) phantom and bone models with cancellous or cortical materials. Three orthopedic implant families, metallic rods, a nail and screw system, and a plate and screw system, are studied. The worst-case configurations of orthopedic implants are identified inside the proposed model and ASTM phantom. These worst-case heating configurations are then implanted in a human body model to evaluate the RF-induced heating in terms of peak SAR1g. For the orthopedic implants fully inside the bone, like the rod and the nail and screw systems, the peak SAR1g values of worst-case configurations obtained from the proposed phantom model are higher than those obtained inside the ASTM phantom. For the orthopedic implants that are mainly outside the bone, such as the plate and screw system, similar worst-case configurations lead to a negligible variation of peak SAR1g inside the human body model.Clinical Relevance- The new phantom model leads to more accurate predictions of the worst-case configuration of orthopedic implants for MR conditional labeling.


Assuntos
Calefação , Próteses e Implantes , Humanos , Imageamento por Ressonância Magnética/métodos
10.
J Cell Mol Med ; 28(5): e18065, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38116696

RESUMO

Colorectal cancer (CRC) is the most prevalent malignancy of the digestive system. Glucose metabolism plays a crucial role in CRC development. However, the heterogeneity of glucose metabolic patterns in CRC is not well characterized. Here, we classified CRC into specific glucose metabolic subtypes and identified the key regulators. 2228 carbohydrate metabolism-related genes were screened out from the GeneCards database, 202 of them were identified as prognosis genes in the TCGA database. Based on the expression patterns of the 202 genes, three metabolic subtypes were obtained by the non-negative matrix factorization clustering method. The C1 subtype had the worst survival outcome and was characterized with higher immune cell infiltration and more activation in extracellular matrix pathways than the other two subtypes. The C2 subtype was the most prevalent in CRC and was characterized by low immune cell infiltration. The C3 subtype had the smallest number of individuals and had a better prognosis, with higher levels of NRF2 and TP53 pathway expression. Secreted frizzled-related protein 2 (SFRP2) and thrombospondin-2 (THBS2) were confirmed as biomarkers for the C1 subtype. Their expression levels were elevated in high glucose condition, while their knockdown inhibited migration and invasion of HCT 116 cells. The analysis of therapeutic potential found that the C1 subtype was more sensitive to immune and PI3K-Akt pathway inhibitors than the other subtypes. To sum up, this study revealed a novel glucose-related CRC subtype, characterized by SFRP2 and THBS2, with poor prognosis but possible therapeutic benefits from immune and targeted therapies.

11.
Water Res ; 246: 120696, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806126

RESUMO

Superoxide radical (•O2-) is capable of degrading perfluorinated compounds that are persistent in nature and cannot be removed by biological or advanced oxidation treatments, but the inherent drawback is the negligible reactivity of •O2-in aqueous phases due to the hydration effect. Here, we explored an innovative way to make use of •O2- by modulating a partial hydration state through spatial confinement control. We demonstrated this idea by conducting heterogeneous Fenton reaction with layered iron oxychloride (FeOCl) catalyst, wherein •O2-radicals produced and confined within the catalyst structure (interlayer spacing of 7.92 Å) showed defluorination effect dealing with perfluorooctanoic acid (PFOA) as model compound. The defluorination combined with advanced oxidation achieved mineralization. Mechanism study revealed that the confinement frustrated the hydration shell of •O2-with coordination number reduced from 3.3 (for bulk phase) to 1.89, and thereby changed its orbital electron properties and enhanced the nucleophilic ability. We further demonstrated a compact FeOCl membrane reactor with highly efficient degradation of PFOA (kobs up to 1.2 min-1) and cost-effective mineralization (2 × 10-6 $ per mgC), operated under ultrafiltration reaction mode. Our findings highlight the great interest of developing spatial confinement technology to modulate •O2--based reactions, as well as the feasibility of combining confinement catalyst structures with heterogeneous Fenton reaction to achieve the mineralization treatment goal.


Assuntos
Fluorocarbonos , Caprilatos , Catálise , Oxirredução , Peróxido de Hidrogênio/química
12.
Front Cell Dev Biol ; 11: 1200197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457292

RESUMO

Background: Cervical cancer (CC) remains one of the most common and deadly malignancies in women worldwide. FBXO5, a protein-coding gene, is highly expressed in a variety of primary tumors and promotes tumor progression, however, its role and prognostic value in CC remain largely unknown. Methods: A key differential gene, FBXO5, was screened according to WGCNA based on immunohistochemical assays of clinical samples, multiple analyses of the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, including survival analysis, tumor mutational burden, GO, KEGG, tumor immune infiltration, and chemotherapeutic drug sensitivity, to explore the expression and prognostic value of FBXO5 in CC. The migration and invasiveness of cervical cancer cells following FBXO5 knockdown and overexpression were examined using wound healing and transwell assays, and the viability of cancer cells was assessed using CCK8 and EdU assays. Results: FBXO5 was discovered to be substantially expressed in CC tissues using data from our CC cohort and the TCGA database, and a survival analysis indicated FBXO5 as a predictive factor for poor overall survival in CC patients. In vitro, CC cells were more inclined to proliferate, migrate, and invade when FBXO5 was upregulated as opposed to when it was knocked down.

13.
Chem Commun (Camb) ; 59(55): 8572-8575, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338511

RESUMO

A new type of metal-free [5+1] cycloaddition reaction of donor-acceptor aziridines with 2-(2-isocyanoethyl)indoles is reported herein. This method exhibits broad substrate scope and atom-economy. A series of 2H-1,4-oxazines containing an indole heterocycle skeleton were obtained in up to 92% yield under mild reaction conditions. Control experiments revealed that free indole N-H is crucial for the above transformations. The theoretical calculation studies provided guidance on the in-depth insight into the reaction mechanism and the hydrogen-bond between the free indole N-H and carbonyl group was identified to lower the free energy barrier in the transition states.


Assuntos
Aziridinas , Oxazinas , Oxazinas/química , Reação de Cicloadição , Metais
14.
Appl Opt ; 62(13): 3289-3298, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132829

RESUMO

A microscope usually consists of dozens of complex lenses and requires careful assembly, alignment, and testing before use. Chromatic aberration correction is a significant step in the design of microscopes. Reducing chromatic aberration by improving optical design will inevitably increase the overall weight and size of the microscope, leading to more cost in manufacturing and maintenance. Nevertheless, the improvement in hardware can only achieve limited correction. In this paper, we propose an algorithm based on cross-channel information alignment to shift some of the correction tasks from optical design to post-processing. Additionally, a quantitative framework is established to evaluate the performance of the chromatic aberration algorithm. Our algorithm outperforms the other state-of-the-art methods in both visual appearance and objective assessments. The results indicate that the proposed algorithm can effectively obtain higher-quality images without changing the hardware or engaging the optical parameters.

15.
J Ovarian Res ; 16(1): 94, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179363

RESUMO

Exosomal miRNAs are known to play important roles in ovarian cancer and chemotherapeutic resistance. However, a systematic evaluation of characteristics of exosomal miRNAs involved in cisplatin resistance in ovarian cancer remains totally unclear. Exosomes (Exo-A2780, Exo-A2780/DDP) were extracted from cisplatin-sensitive cells (A2780) and cisplatin-resistant cells (A2780/DDP). Differential exosomal miRNA expression profiles were found by high-throughput sequencing (HTS). Target genes of the exo-miRNAs were predicted by using two online databases to increase the prediction accuracy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were utilized to find biological relationships with chemoresistance. RT‒qPCR of three exosomal miRNAs was performed, and a protein‒protein interaction (PPI) network was established to identify the hub genes. The GDSC database was used to prove the association between hsa-miR-675-3p expression and the IC50 value. An integrated miRNA-mRNA network was constructed to predict miRNA-mRNA associations. The connection between hsa-miR-675-3p and ovarian cancer was discovered by immune microenvironment analyses. The upregulated exosomal miRNAs could regulate gene targets through signalling pathways such as the Ras, PI3K/Akt, Wnt, and ErbB pathways. GO and KEGG analyses indicated that the target genes were involved in protein binding, transcription regulator activity and DNA binding. The RT‒qPCR results were consistent with the HTS data, and the results of PPI network analysis suggested that FMR1 and CD86 were the hub genes. GDSC database analysis and construction of the integrated miRNA-mRNA network suggested that hsa-miR-675-3p was associated with drug resistance. Immune microenvironment analyses showed that hsa-miR-675-3p was crucial in ovarian cancer. The study suggested that exosomal hsa-miR-675-3p is a potential target for treating ovarian cancer and overcoming cisplatin resistance.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Microambiente Tumoral , Proteína do X Frágil de Retardo Mental
16.
Org Lett ; 25(21): 3829-3834, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37196242

RESUMO

Magnesium(II)-catalyzed cascade reactions of N,N'-cyclic azomethine imines with indolyl-substituted isocyanides are reported herein. The method exhibited a high functional group tolerance and broad substrate scope. A series of anti-pentacyclic spiroindolines containing N,N'-fused heterocycle skeletons were obtained in up to 82% yield with 8.5:1 dr under mild reaction conditions. Intriguingly, a sequential HOAc-mediated protonation results in a diastereoenriched epimerization, which gives rise to the syn-pentacyclic spiroindolines as the sole isomers.

17.
J Inflamm Res ; 16: 2189-2207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250106

RESUMO

Background: Immunogenic cell death (ICD) can reshape the immune microenvironment of tumors. Driven by stressful pressure, by directly destroying tumor cells and activating the body's adaptive immunity, ICD acts as a modulator of cell death, enabling the body to generate an anti-tumor immune response that produces a more effective therapeutic effect, while tumor cells are driven to kill. Hence, this research aimed to find and evaluate ICD-related genetic signatures as cervical cancer (CC) prognostic factors. Methods: Data of CC patients from the Tumor Genome Atlas (TCGA) were used as the basis to obtain immunogenic cell-death-related prognostic genes (IPGs) in patients with CC, using the least absolute shrinkage and selection operator and Cox regression screening, and the IPGs scoring system was constructed to classify patients into high- and low-risk groups, with the Gene Expression Omnibus (GEO) dataset as the validation group. Finally, the difference analysis of single-sample gene set enrichment analysis, tumor microenvironment (TME), immune cells, tumor mutational burden, and chemotherapeutic drug sensitivity between the high-risk and low-risk groups was investigated. Results: A prognostic model with four IPGs (PDIA3, CASP8, IL1, and LY96) was developed, and it was found that the group of CC patients with a higher risk score of IPGs expression had a lower survival rate. Single and multifactor Cox regression analysis also showed that this risk score was a reliable predictor of overall survival. In comparison to the low-risk group, the high-risk group had lower TME scores and immune cell infiltration, and gene set variation analysis showed that immune-related pathways were more enriched in the high-risk group. Conclusion: A risk model constructed from four IPGs can independently predict the prognosis of CC patients and recommend more appropriate immunotherapy strategies for patients.

18.
PeerJ ; 11: e15070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101794

RESUMO

Poly(A) binding protein interacting protein 1 (PAIP1) is a translation regulator and also regulate the decay of mRNA. PAIP1 has also been reported to be a marker of increased invasive potential of liver cancer. However, the roles and underlying molecular mechanism of PAIP1 in liver cancer is still unclear. Here, cell viability and the gene expression profile of liver cancer line HepG2 transfected with PAIP1 siRNA was compared with cells transfected with non-targeting control siRNA. The results showed that PAIP1 knockdown inhibited cell viability, and extensively affects expression of 893 genes at transcriptional level in HepG2 cells. Gene function analysis showed that a large number of PAIP1 up-regulated genes were enriched in term of DNA-dependent transcription and the down-regulated genes were enriched in some pathways including immune response and inflammatory response. qPCR confirmed that PAIP1 knockdown positively regulated the expression of selected immune and inflammatory factor genes in HepG2 cells. Expression analysis of TCGA revealed that PAIP1 had positive correlations with two immune associated genes IL1R2 and PTAFR in liver tumor tissue. Taken together, our results demonstrated that PAIP1 was not only a translation regulator, but also a transcription regulator in liver cancer. Moreover, PAIP1 could function as a regulatory factor of immune and inflammatory genes in liver cancer. Thus, our study provides important cues for further study on the regulatory mechanism of PAIP1 in liver cancer.


Assuntos
Neoplasias Hepáticas , Humanos , Linhagem Celular , Neoplasias Hepáticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo
19.
Angew Chem Int Ed Engl ; 62(25): e202302832, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37025034

RESUMO

A concise asymmetric total synthesis of (-)-quinocarcin has been accomplished with high step economy from commercially available starting materials. A catalytic enantioselective reductive 1,3-dipolar cycloaddition reaction of N-heteroaryl secondary amides with reactive dipolarophiles using iridium/copper relay catalysis was developed to prepare the key chiral pyrrolidine intermediate with three stereocenters. This protocol features excellent regio-, exo- and enantioselectivities, broad substrate scope, and good functional group tolerance. The high efficiency was also ensured by a RhIII -catalyzed C-H activation/cyclization and a tandem diastereoselective hydrogenation/cyclization to construct the tetrahydroisoquinoline-pyrrolidine tetracyclic core unit of quinocarcin.


Assuntos
Amidas , Pirrolidinas , Reação de Cicloadição , Estereoisomerismo , Catálise
20.
Magn Reson Med ; 90(2): 686-698, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37036364

RESUMO

PURPOSE: The Radiofrequency (RF)-induced heating for an active implantable medical device (AIMD) with dual parallel leads is evaluated in this paper. The coupling effects between dual parallel leads are studied via simulations and experiments methods. The global transfer function technique is used to assess the RF-induced heating for dual-lead AIMDs inside four human body models. METHODS: RF-induced heating for spinal cord stimulator systems with 60 and 90 cm length leads are studied at three parallel dual-lead configurations (closely spaced, 8 mm spaced, and 40 mm spaced) and a single-lead configuration. The global transfer function method is used to develop the AIMD models of different configurations and is used for lead-tip heating assessments inside human body models. RESULTS: In simulation studies, the peak 1g specific absorption rate/temperatrue rises of dual parallel leads systems is lower than those from the single-lead system. In experimental American Society for Testing and Materials phantom studies, the temperature rises for the single-lead AIMD system can be 2.4 times higher than that from dual-lead AIMD systems. For the spinal cord stimulator systems used in the study, the statistical analysis shows the RF-induced heating of dual-lead configurations are also lower than those from the single-lead configuration inside all four human body models. CONCLUSION: For the AIMD system in this study, it shows that the coupling effects between the dual parallel leads of AIMD systems can reduce RF-induced heating. The global transfer function for different spatial distance dual-lead configurations can potentially provide a method for the RF-induced heating evaluation for dual-lead AIMD systems.


Assuntos
Calefação , Próteses e Implantes , Humanos , Simulação por Computador , Temperatura , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...